A communication paradigm for biometrics security and privacy

Emanuele Maiorana, Patrizio Campisi

emanuele.maiorana@uniroma3.it

Department of Engineering, University Roma Tre
Via Volterra 62, 00146, Rome, Italy
Biometric Recognition Systems

• Automatic systems performing people recognition using their physical or behavioral characteristics

– applications
 ▪ law enforcement
 o criminal identification
 ▪ access control
 o physical or logical

– advantages
 ▪ cannot be lost or stolen
 ▪ improved security

– desired properties
 ▪ performance
 ▪ circumvention
 ▪ acceptability
Main concerns affecting users’ acceptability

- Security
 - If compromised, biometrics cannot be replaced

- Privacy
 - Misuse of data (function creep)

Need for securing the employed biometric templates

- Cryptography
 - Templates vulnerable during authentication

- Hashing
 - Not error-tolerant, biometrics can vary

- Template protection schemes
 - Templates modified for
 - Providing protection
 - Providing renewability
 - Guaranteeing performance
Most employed biometric protection scheme

- binarization of $x \rightarrow$ binary template b
- error correcting code c XORed with b to manage variability
- storage of helper data v

Issues

- binding process biometrics/keys limited to the XOR
- binary block codes have low error correction capability (ECC)
 - high False Rejection Rates (FRRs) due to biometrics variability
 - low security, limited by the length k of the binary key m
• General construction
 – \(c \): codeword selected from a code \(C \)
 – \(x \): biometric template
 – \(v = f(x, c) \): code-offset
 ▪ example: \(v = f(x, c) = x + c \)
 ▪ should not reveal information on neither \(x \) nor \(c \)
 – \(\tilde{c} = g(\tilde{x}, v) \): revert binding operation
 ▪ user recognized iff \(\tilde{x} \approx x \rightarrow \tilde{c} \approx c \)
• Modulation
 – \(\mathbf{c} \): symbol selected from a constellation (ex.: QAM, PSK)
 – \(\mathbf{n} \): noise added by the channel
 ▪ \(\mathbf{n} = \mathbf{x} - \hat{\mathbf{x}} \) in the code-offset scheme
 – \(\hat{\mathbf{c}} \): received corrupted symbol to be demodulated

• Proposed approach
 – use of a modulation-like scheme for FC generalization
 ▪ improvement in both verification rates and security
• Characteristics
 – use of turbo-codes for managing intra-class variability
 – codes modulated into s symbols of an L-points constellation
 – binding expressed through a generic function $f(\cdot)$
 ▪ values in x may belong to an alphabet different than c’s one
 ▪ added noise characterized as $n = \tilde{c} - c = g(\tilde{x}, f(x, c)) - f(x, c)$
 – joint demodulation and decoding of $\tilde{c} = g(\tilde{x}, v)$
 ▪ use of turbo-codes in soft-decoding modality
 ▪ ECC improved without user-specific information (privacy leakage)
Practical Implementation

- Constellation
 - Phase Shift Keying (PSK) modulation
 - symbols in \(c \) as \(L \) possible points in a complex circle

- Binding function
 - hard to say which symbols may generate a given value in \(v \)
 - quantization of each element of \(x \) in \(D \) possible values (\(D > L \))
 - linear mapping of the values to the interval \([-\pi; \pi]\)
 - binding
 \[
 \begin{align*}
 v &= f(x,c) = c \cdot e^{ix} \\
 \tilde{c} &= g(\tilde{x}, v) = v \cdot e^{-i\tilde{x}}
 \end{align*}
 \]
• Measured through the entropy $H(x/v)$
 – knowing v, having m directly provides x: $H(m/v) = H(x/v)$
 ▪ using a (n, k) turbo code, if v is known x can be recovered from only $z = \frac{k}{\log_2 L}$ symbols (instead of $s = \frac{n}{\log_2 L}$)
 ▪ $H(x^z|v)$ estimated with second-order dependency approximation

$$\hat{P}(x^z) = \prod_{i=1}^{z} P\left(x_{u_i}^z|x_{t(u_i)}^z\right), \ 1 \leq t(u_i) < u_i, \ u = \{u_i\}, \ 1 \leq i \leq z$$

$$\hat{H}(x^z|v) = \min_{z \in Z} \left\{ \min_{\{u\}} \left\{ \sum_{i=1}^{z} \left\{ H\left(x_{u_i}^z, x_{t(u_i)}^z|v\right) - H\left(x_{t(u_i)}^z|v\right) \right\} \right\} \right\}$$

– ideal biometric representations x should possess
 ▪ low intra-class variability, for managing it with feasible ECCs
 ▪ a large number of features, for using codes with large k
 ▪ independent features, for the z most-correlated ones determine the security
Application: On-line Signatures

- Biometric representation
 - use of Universal Background Models (UBMs)
 - users’ templates obtained adapting a person-independent model
 - use of Hidden Markov Models (HMMs) as global model
 - adaptation of the Gaussians mean values with a user-independent matrix \(P \)
 \[m_u = m_{UBM} + P \cdot x_u \]
 - theoretically uncorrelated features
 - possible large feature number: 4800
 - significant intra-class variability
 - \(s \) most stable features selected in a training phase
 - no information-leakage
 - characteristics
 - theoretically uncorrelated features
 - possible large feature number: 4800
 - significant intra-class variability
 - \(s \) most stable features selected in a training phase
 - no information-leakage

- Database
 - samples taken from the MCYT on-line signature DB
 - 25 genuine and 25 skilled forgeries for each of 100 users
Experimental results

- **Fuzzy commitment**
 - BCH codes → unacceptable performance

 | s | 511 | 1023 | 2047 | 4095 | |
|---|---|---|---|---|---|
 | FRR | 50.0| 61.5 | 77.8 | 93.6 |
 | FAR | 0.3 | 0.2 | 0.0 | 0.0 |
 | $H(x^2|v)$ | 8.7 | 9.6 | 10.4 | 11.3 |

 - turbo codes on binary data ($L=D=2$) → still high FRR

 - no soft-decoding

 | s | 511 | 1023 | 2047 | 4095 | |
|---|---|---|---|---|---|
 | FRR | 4.6 | 7.4 | 15.0 | 32.4 |
 | FAR | 8.5 | 3.9 | 1.6 | 0.4 |
 | $H(x^2|v)$ | 22.9 | 50.7 | 108.1 | 221.5 |

- **Proposed approach**

 - increasing L improves FAR and security, worsening FRR

 - increasing D improves FRR, worsening FAR and security

<table>
<thead>
<tr>
<th>s</th>
<th>2047</th>
<th>4095</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>$D=4$</td>
<td>FRR</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>FAR</td>
<td>22.3</td>
</tr>
<tr>
<td></td>
<td>$H(x^2</td>
<td>v)$</td>
</tr>
<tr>
<td>$D=8$</td>
<td>FRR</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>FAR</td>
<td>67.2</td>
</tr>
<tr>
<td></td>
<td>$H(x^2</td>
<td>v)$</td>
</tr>
</tbody>
</table>

E. Maiorana, P. Campisi - A communication paradigm for biometrics security and privacy
• Biometric representation
 – use of Daugman’s rubber sheet model
 ▪ iris segmented and normalized to create a rectangular template
 o phase information of the Gabor filtering retained as features
 – characteristics
 ▪ highly correlated features (severe issue for security)
 ▪ possible large feature number: $I \times J = 240 \times 20 = 4800$ features
 ▪ significant intra-class variability
 o intra-class variability reduction with a user-independent mask
 □ keeps regions where occlusions (eyelids) are not encountered ($s = 2048$)

• Database
 – samples taken from the CASIA-v4 iris DB
 ▪ 2251 images taken from 395 irises, from 249 subjects
Experimental results

- Fuzzy commitment vs Proposed approach

	FRR	FAR	k	$H(x^2	v)$	
BCH Codes	48.8	0.0	13	5.7		
	53.7	0.0	31	13.9		
	60.4	0.0	47	20.7		
	71.3	0.0	71	31.2		
Turbo Codes	13.7	0.0	268	117.7		
	13.8	0.0	310	140.4		
	13.9	0.0	368	163.5		
	14.3	0.0	450	200.4		
Proposed Approach	L=2	$D=2$	13.4	0.0	132	67.4
	$D=4$	4.84	0.1	132	18.6	
	$D=8$	3.00	0.3	132	11.6	
	$L=4$	$D=2$	-	-	-	
Proposed Approach	$D=4$	-	-	-	-	
	$D=8$	13.6	0.0	268	117.7	
	$L=4$	$D=8$	8.92	0.0	268	46.7

- Recognition accuracy comparison
Conclusions

• Proposal of a template protection scheme inspired by the digital communication paradigm
 – modulation constellations for symbol representation
 – turbo-decoding employed in soft-modality
 ▪ generalization of the fuzzy commitment scheme

• Tests with on-line signatures and iris biometrics
 – great flexibility in selecting the operating conditions
 – improved performance in verification rates and security
 ▪ achieving low FRR and high security are conflicting requisites
 o proper selection of parameters L and D

• Future developments
 – applications to other biometrics
 – analysis of multi-biometrics systems
Bibliography

Thanks for your attention!

Questions?

emanuele.maiorana@uniroma3.it